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Abstract. We are concerned with investigating the apparent effective-
ness of Radford et al.’s “Sentiment Neuron,” [9] which they claim encap-
sulates sufficient knowledge to accurately predict sentiment in reviews.
In our analysis of the Sentiment Neuron, we find that the removal of the
neuron only marginally affects a classifier’s ability to detect and label sen-
timent and may even improve performance. Moreover, the effectiveness
of the Sentiment Neuron can be surpassed by simply using 100 random
neurons as features to the same classifier. Using adversarial examples, we
show that the generated representation containing the Sentiment Neuron
(i.e., the final hidden cell state in a LSTM) is particularly sensitive to the
end of a processed sequence. Accordingly, we find that caution needs to
be applied when interpreting neuron-based feature representations and
potential flaws should be addressed for real-world applicability.

1 Introduction

Several authors [13, 2, 9] have investigated the idea that single neurons or groups
of neurons have easily interpretable behaviour. Recent work [6] has shown ev-
idence that interpretable neurons do not necessarily correspond to improved
neural network effectiveness and that reliance on interpretable neurons may be
a sign of overfitting. To this end, we focus on Radford et al.’s [9] finding that
after training a large, single layer LSTM [3] language model on ∼ 86M Amazon
Reviews [5], a single neuron emerges as a strong predictor of sentiment, which
they dub the “Sentiment Neuron” (“SN”). To examine the Sentiment Neuron’s
predictive capabilities, we perform an ablation analysis on the language model’s
features to test the impact that their removal has on classification accuracy
across several datasets (Section 3). We find that the Sentiment Neuron is not
necessary to achieve effective classification and that, in some cases, it can actually
decrease effectiveness. Moreover, we find that randomly choosing 100 features
(neurons) from the language model more often than not produces a classifier
that outperforms one based on the Sentiment Neuron alone. This indicates that
the Sentiment Neuron does not contain all or most of the knowledge needed for
sentiment detection.

Furthermore, Radford et al.’s feature representation, where they use the final
hidden cell state of the LSTM as a sequence’s representation, is one of several
possible valid representations. Following Howard et al. [1], we examine different
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methods of extracting features from an LSTM-based language model. We find
that the presence of a neuron predictive of sentiment is an artefact of the net-
work architecture regardless of how we generate features (e.g., mean-pool, final
state) but its predictive power varies. In addition, a mean-pool representation
appears to be more attuned to sequence length and its effects than the final state
representation (Section 4). The main benefit to a mean-pool representation is
that it is robust to adversarial examples (i.e., ending sequences with sentiment
words); while the final state features are not (Section 5). We conclude that in-
terpretable neurons do not guarantee success and that feature representations
can and should be robust to potential adversarial cases.

(a) Radford et al. [9]. (b) Our reproduction.

Fig. 1: Plots showing linear classifier weights trained on SST with language model
features from Radford et al. [9] and our reproduction.

2 Methodology

We follow the methodology of Radford et al. [9] which trains a logistic regression
classifier on top of the language model features. In the default setting, these
language model features are the final hidden cell state of the LSTM over a
sequence. However, we vary this in the following sections to test the effectiveness
of different representations. For each dataset, we shuffle and split them into three
folds: 70% training set; 10% development; and, 20% test set. The development set
is used to perform a light grid search of hyper-parameters for the classifier. While
full cross-validation would likely yield a superior general purpose classifier, we
are only concerned with examining the effect of representations and not finding
the best classifier.

We evaluate this technique using four sentiment analysis datasets: Stan-
ford Sentiment Treebank (“SST”) [10]; IMDB Large Movie Review Dataset
(“IMDB”) [4], Rotten Tomatoes Short Movie Reviews (“MR”) [8]; and Ama-
zon Customer Review Dataset (“CR”) [12]. Wang and Manning [11] provide a
useful summary of these datasets. It is worth noting that the IMDB dataset
consists of full length movie reviews and an order of magnitude more examples
than the short reviews in the other datasets. Code to reproduce our results, as
well as train a new language model from scratch, is made publicly available.1

1 Source code available at github.com/kirasystems/science.
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3 Neuron Ablation

We see that there is, indeed, a strongly predictive neuron when examining the
weights of final state features in Figure 1. This holds for the released weights
from Radford et al. [9] and our reproduction of their model. Similar to NVidia’s
reproduction [7], we find that the Sentiment Neuron exhibited opposite polarity
from Radford et al., which indicates that such neurons are network artefacts
and not just a one-off. Although, what this neuron looks like may vary between
implementations.

Features SST MR CR IMDB

All features 91.76 87.52 91.38 92.28
SN Deleted 91.87 86.96 90.72 91.77
SN Only 88.52 84.52 88.33 91.46

Table 1: Accuracy on 4 datasets using all features, SN only, and SN deleted.

Using Radford et al.’s weights, we can alternatively isolate and ablate the
SN from the features during training. From Table 1, isolation of the SN appears
to yield decreases in effectiveness across all the datasets. When we ablate the
SN, there is no substantial change from using all the features. This indicates
that the inclusion of the SN does not appear to add crucial information to the
classifier. Indeed, inclusion of the SN appears to hinder performance on the SST
dataset. In essence, their remains enough information distributed among the
other neurons to still effectively train a classifier.

Based upon the ablation results, we might wonder whether any other neu-
rons would hinder classification accuracy. Accordingly, we ablate each individual
neuron and train a new classifier in turn for all neurons on the SST and IMDB
datasets. Figure 2 reports the results for SST as the IMDB results are similar. It
does appear to be the case that some neurons do hinder performance. The neu-
ron which when ablated gives the highest accuracy (92.15%), yields a classifier
that is only slightly better than chance when used in isolation. Thus, it appears
to be the case that some features do not contribute to sentiment detection.

We can also examine the performance of classifiers trained on each neuron in
isolation for SST and IMDB. Figure 3 shows that there exist neurons that rival
the performance of the SN in predicting sentiment. Moreover, there are many
neurons that do not appear to be good predictors of sentiment. Interestingly,
ablating multiple of the “hindrance” neurons (i.e., those that produce a better
classifier when ablated) or the less predictive neurons does not yield substantial
improvements in the resulting classifier. It would appear that the full feature
classifier is able to “learn around” these features.

Based upon our findings thus far, we might wonder whether or not there is a
necessary “critical mass” of neurons that are needed to produce an effective clas-
sifier. In Figure 4, we cumulatively ablate each neuron in order from highest to
lowest corresponding logistic classifier weight 2 on the SST dataset. We see that

2 These weights are generated from training the classifier on all available neurons.
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Fig. 2: Accuracy scores of classifier
with each neuron ablated individu-
ally.

Fig. 3: Accuracy scores with linear
classifier trained on each neuron in-
dividually.

Fig. 4: Accuracy on SST as neurons
are cumulatively ablated.

Fig. 5: Histogram showing the ac-
curacy on 1000 random samples of
100 neurons.

with ∼100 neurons remaining we achieve parity with the SN before precipitously
dropping. Accordingly, if the SN is our barometer for a “good” or “sufficient”
classifier then we need at least 100 neurons to rival its effectiveness. We then
proceed to train 1000 different classifiers using 100 randomly selected neurons.
Figure 5 shows that the resulting accuracy scores form an approximately nor-
mal distribution with the SN’s score coinciding with the lower tail. Accordingly,
selecting a random group of neurons will more often than not yield a superior
classifier to the SN. This leads us to conclude that, contrary to Radford et al. [9],
there is a meaningful amount of sentiment information stored outside of the SN.

4 Features

Up until now, we have examined the feature representation using the final hidden
cell state of the LSTM but this could allow the end of a sequence to have undue
influence on the feature weights. While this may matter less for short pieces of
text, longer pieces of text may not be ideally represented as there would be a
skew towards the end of the sequence. Accordingly, we examine different ways
of integrating information across time-steps including the mean-pool, min-pool,
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max-pool, and absolute-pool of values. For the sake of brevity, we report the
mean-pool results only as they provide the most interesting counterpoint to the
final state features. Similar to Howard et al. [1], we report the concatenation of
final state and mean-pool representations as such a representation may offer the
advantages of both representations.

Features SST MR CR IMDB
Final 91.76 87.52 91.38 92.28
Mean 88.03 82.97 89.52 92.82
concat(Final, Mean) 91.76 87.43 90.45 93.86

Table 2: Accuracy scores on 4 sentiment
datasets using final, mean and concate-
nated state features.

Fig. 6: Logistic regression weights for
SST-model using mean-pool features.

Table 2 reports the accuracy scores across our four datasets for the different
possible feature representations. Generally, the concatenated features generally
perform as good as one of the constituent feature representations and can some-
times outperform both. Interestingly, we do not see as much degradation of the
final state features in the longer IMDB text than we had expected but this may
be due to repeated use of sentiment throughout a review. The generally infe-
rior performance of the mean-pool features is not readily apparent but we posit
that the shorter reviews did not allow the mean-pool features to stabilize on a
good representation. Such a hypothesis warrants further investigation but the
competitive performance of the mean-pool features on IMDB provides some ev-
idence that this length may play a role. Further, if we compare the weights of
the mean-pool neurons (Figure 6) to the final state ones (Figure 1), we see that
the mean-pool features have a greater number of influential neurons (neurons
with larger corresponding weights). This increase in influential neurons may then
correspond to requiring longer sequences to make accurate classifications.

In spite of these differences, there are a class of examples that neither the final
state nor mean-pool features are able to classify. Across the the four datasets, the
overlap of incorrect examples ranges between 30-40% which appears to indicate
that there are aspects of sentiment that neither of these feature representations
capture. We note that manual examination of a selection of these incorrectly
identified examples reveals that these express less obvious sentiment (e.g., “What
you would end up with if you took Orwell, Bradbury, Kafka, George Lucas and
the Wachowski Brothers and threw them into a blender.”). While such examples
are not unexpected, they highlight that Radford et al.’s network is unable to
capture all nuances of sentiment.

5 Adversarial Examples

As suggested in the previous section, the final state features may be subject
to undue influence of the ending of a sequence. We test this by adversarially
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adding a positive (“Wonderful”) and negative (“Terrible”) sentiment word to test
examples and examine how this affects classification accuracy. As seen in Table
3, the effectiveness of the final state and concatenated features are substantially
affected by the inclusion of a trailing sentiment word for small datasets; while
the mean-pool features are robust to their inclusion. This lends credence to
our hypothesis that final state features are unduly influenced by most recently
processed input, whereas the mean-pool features are more capable of capturing
a sequence’s overall sentiment.

This trend does not hold for longer text since adding a single word does
not appear to hamper the final state (or concatenated) features from achieving
good scores on IMDB with only a single word added (i.e., the IMDB-1 results).
However, the IMDB reviews are approximately 10 times longer than the smaller
reviews, which means we may need to add a similar proportion of sentiment
words to the end to achieve a similar adversarial effect. The results of the IMDB-
10 setting bear this out and this indicates the choice of feature representation
should take into account all possible use cases. It is not inconceivable that in
the real-world such adversarial examples would occur, especially in short form
communication (e.g., Twitter).

Sentiment Features SST MR CR IMDB-1 IMDB-10

Positive
Final 52.17 57.22 77.06 91.16 50.30
Mean 89.13 82.88 90.05 92.87 89.73
concat(Final, Mean) 53.93 61.07 79.97 93.50 61.25

Negative
Final 72.16 59.52 48.01 90.69 53.17
Mean 89.02 83.63 90.98 92.91 92.68
concat(Final, Mean) 73.31 57.74 42.44 93.07 81.29

Table 3: Accuracy scores on 4 sentiment datasets when positive and negative words
are appended to the test set examples. IMDB-1 denotes a single sentiment word added
and IMDB-10 denotes 10 words added to the end of test examples.

6 Conclusion

Radford et al. [9] found that in a large LSTM-based language model, there is a
single neuron that is predictive of sentiment. After conducting an ablation study,
we find that this neuron is not necessary to achieve effective classification and
that, in some cases, hinders effectiveness. Moreover, we find that the effective-
ness of the Sentiment Neuron can be matched or exceeded, more often than not,
by randomly selecting 100 neurons to train a classifier. This indicates that the
reliance on a single “understandable” neuron may result in undue bias in the
resulting classifier, which is in accord with the findings of Marcos et al. [6]. Ad-
ditionally, we find that the feature representation is important and that relying
on the final hidden cell state opens an end user up to exploitation by adversarial
examples. Using the mean-pool of cell states across a sequence appears to be
robust to this type of exploitation but is generally inferior to the final state fea-
tures. Accordingly more work is necessary to find a robust but highly effective
representation.



On Interpretability and Feature Representations 7

References

1. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (2018)

2. Karpathy, A., Johnson, J., Li, F.: Visualizing and understanding recurrent net-
works. International Conference on Learning Representations (2016)

3. Krause, B., Lu, L., Murray, I., Renals, S.: Multiplicative LSTM for sequence mod-
elling. International Conference on Learning Representations (2017)

4. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies
- Volume 1. pp. 142–150. HLT ’11, Association for Computational Linguistics,
Stroudsburg, PA, USA (2011)

5. McAuley, J.: Amazon product data. http://jmcauley.ucsd.edu/data/amazon/
6. Morcos, A.S., Barrett, D.G., Rabinowitz, N.C., Botvinick, M.: On the importance

of single directions for generalization. In: International Conference on Learning
Representations (2018)

7. Nvidia: Sentiment discovery. GitHub repository (2017)
8. Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment catego-

rization with respect to rating scales. In: Proceedings of ACL. pp. 115–124 (2005)
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